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A model is proposed for the evolutior. of the profile of a growing interface. The deterministic
growth is solved exactly, and exhibits nontrivial relaxation patterns. The stochastic version is stud-
ied by dynamic renormalization-group techniques and by mappings to Burgers's equation and to a
random directed-polymer problem. The exact dynamic scaling form obtained for a one-dimensional
interface is in excellent agreement with previous numerical simulations. Predictions are made for
more dimensions.
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Many challenging problems are associated with
growth patterns in clusters' and solidification fronts. '
Several models have been proposed recently to
describe the growth of smoke and colloid aggregates,
flame fronts, tumors, etc. ' It is generally recognized
that the growth process occurs mainly at an "active"
zone on the surface of the cluster, with interesting
scaling properties. ' However, a systematic analytic
treatment of the static and dynamic fluctuations of the
growing interface has been lacking so far.

In this paper we propose a model for the time evolu-
tion of the profile of a growing interface, and examine
its properties. Guided by the ideas of universality we
write down the simplest nonlinear, local differential
equation governing the growth of the profile applicable
to such processes as vapor deposition4 or the Eden
model. ' The analysis of this equation is considerably
simplified by mappings to two different, albeit more
familiar, forms. One is the hydrodynamic problem of
the Burgers's equation, and the other is a directed
polymer in a random environment. The deterministic
growth of the profile can in fact be obtained exactly,
and its long-time relaxation behavior exhibits very in-
teresting patterns related to the shock waves in
Burgers's equation. 6 The stochastic growth is treated
by dynamic renormalization-group techniques. For a
one-dimensional interface a fluctuation-dissipation
theorem9 exists, leading to an exact dynamic exponent
z = —,'. This result is in excellent agreement with pre-
vious numerical simulations of ballistic aggregation'
and Eden clusters. " For two-dimensional interfaces,
the mapping to the random directed-polymer problem
is used to make an efficient indirect numerical simula-
tion with the result z —1.5. A nontrivial behavior is
also predicted for the static fluctuations in this case.

The interface profile, suitably coarse-grained, is
described by a height h(x, t). As usual, it is con-
venient to ignore overhangs so that h is a single-valued
function of x. The simplest nonlinear Langevin equa-
tion for a local growth of the profile is given by'2

The first term on the right-hand side describes relaxa-
tion of the interface by a surface tension v. The
second term is the lowest-order nonlinear term that
can appear in the interface growth equation, and is
justified later on with the Eden model as an example.
Edwards and Wilkinson'3 have studied Eq. (1) without
the nonlinear term, but we demonstrate that such a
term is necessary, and responsible for the unusual
properties of the growing interface. Higher-order
terms can also be present, but they are irrelevant, and
will not modify the universal scaling properties. The
noise q(x, t) has a Gaussian distribution with
(7l(x, t)) =0, and

(q(x, t )q(x', t') ) = 2D5~(x —x') 6(t —t'),

although the actual form of the distribution is ir-
relevant. In principle there is also a velocity term,
which is removed by choice of an appropriate moving
coordinate system. Note that Eq. (I) is invariant
under translations h lt +const, and obeys the infini-
tesimal reparametrization

h+a X, X X+Xat,

which describes the tilting of the interface by a small
angle.

To justify the nonlinear term in Eq. (1), consider
the growth of an Eden cluster5 taking place by addition
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of particles to the surface. As indicated in Fig. 1,
growth occurs in a direction locally normal to the in-

terface. %hen a particle is added, the increment pro-
jected along the h axis (Fig. 1 inset) is Sh
= [(v5t) + (v5tVh) ]'t, resulting in

h= [I+(Vh)']''= +( /2)(Vh)'+. . . .

After transformation to the comoving frame, and in-

clusion of a surface tension (obtained if surface parti-
cles are allowed to diffuse and relax), the original
growth equation is regained. Such a nonlinear term is

clearly expected in all situations where lateral growth is
allo~ed. "

Equation (1) can be mapped to two other useful and
possibly more familiar forms. Following the transfor-
mation W(x, t) =exp[(A/2v)h(x, t)], we obtain

FIG. l. Successive profiles for a deterministic growth by a
process similar to Eq. (1). Inset indicates how growth occurs
locally along the normal to the interface. The gradient of the
profile develops "shock waves" as explained in the text.

a W/Bt = vV' W+ (X/2v)~(x, t) K (2)

which is a diffusion equation in a time-dependent ran-

dom potential. In fact W(x, t) can be regarded as the
sum of Boltzmann weights for all static configurations
of a directed polymer in a (d+1)-dimensional space
from (0, 0) to (x,t). The noise term then describes a

quenched random potential (A/2v)q(x, t) exerted by

the environment on the polymer. The second
transformation, v = —'7h, results in

Bv/Bt+A. v Vv= v'7'v —'7q(x, t),

which is (for X = 1) the Burgers's equation for a
vorticity-free velocity field. 6 [The connection between
Eqs. (2) and (3) has already been noted. 's] Both
transformations provide valuable insight into the inter-
face problem.

There is extensive literature on the study of dendrite
formation, and pattern selection through complicated
deterministic models. 2 The deterministic version of
Eq. (1), i.e., with q(x, t) = 0, does indeed possess uni-
formly moving solutions resembling dendrites, such as

h (x, t) = (2v/h. ) [in~cos(k x) ~

—vk t].

However, these solutions are inherently unstable, and
a typical initial condition leads to an asymptotically
smooth interface. The relaxation pattern in this case is
still interesting, and very different from the ordinary
surface-tension-dominated case. In the absence of
noise Eq. (2) can be solved exactly subject to any ini-
tial condition. If the initial profile is h (x, 0) = ho(x),
its evolution is given by

h(x, t) = In J~
&

exp — + ho(g)
2v ~" d~g (x —g)'

-~ (4~vt)dt2 4vt 2v

The long-time behavior is obtained by methods similar
to those used for Burgers's equation. 6 The asymptotic
form of the solution is composed of paraboloid seg-
ments h„=A„—(x —g„)2/2kt, joined together with

discontinuities in V'h. It can be proved, by thc gen-
eralization of results of Ref. 6, that if the initial inter-
face is rough {i.e., P(h ( e)x) —exp[ —Jdx('7h) ]],
the average size of these paraboloids grows in time as
t'3 in one dimension. A typical one-dimensional
growth pattern is sketched in Fig. 1, together with the
asymptotic form of v = —Bh/Bx The rel.ation
between the parabolic segments and the shock waves
of Burgers's equation6 is apparent from this figure.
Further evolution of the pattern proceeds through the
larger parabolas' growing at the expense of the smaller
ones, and parallels the evolution of shock waves which

l

is perhaps more familiar. The pattern has similarities
to geological stratifications and successive layers of
snow drifts. Vv'e thus have an intriguing connection
between evolutions of a hydrodynamic and a growth
patternI

Let us now return to the full stochastic problem de-
fined by Eq. (1). The formalism of the dynamic re-
normalization groups can be applied to a study of the
scaling of time-dependent fluctuations. Indeed, this
procedure has already been applied by Forster, Nelson,
and Stephen'6 to Burgers's equation [Eq. (3)], and
their results can be directly taken over. However,
since we believe this technique to be important for
more complex interface problems, it is briefly outlined
here for completeness. The spatial Fourier transform
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of Eq. (I) is rewritten as

—and x=—1

2

uence of a
fluctuation-dissipation theorem9 that holds in d =1
only, and ensures q= 2 —z; i.e., v and D scale the
same way to all orders in perturbation theory, as is evi-
dent to the lowest order from Eqs. (5a). Another
consequence of this theorem is that x [Eq. (6)] takes
the same value as for an "ideal" interface. Since such
a theorem does not hold for del, x is in general
"nonideal, " notwithstanding recent conjectures to the
contrary. ' ' The dynamic scaling form has in fact
been confirmed by the numerical studies of Plischke
and Racz" on the Eden model. They find
z = 1.55 + 0.15, in excellent agreement with the above
prediction of —', . There are also a number of simula-
tions confirming that for a strip geometry the width
scales as L" with x = —,'. '0 ""'s This was interpret-
ed' ' as indicating an "ideal" interface, but as dis-
cussed above, it is a result of a peculiarity of one-
dimensional interfaces.

Further support for the universal character of these
exponents is provided by the earlier numerical results
of Family and Viscek'0 on a "ballistic deposition
model, " which is a realistic description of vapor depo-
sition processes. 4 They observe that initially the inter-
face width grows with time (t is proportional to M, the
mean number of deposited particles in their notation)
as t +-', very close to our prediction of
v' = x/z = —,

'
. Eventually the width scales with the

sample size L as L' with x =0.42+ 0.02, not very far
from 0.5.

(b) d=2.—This is the critical dimension of the
model. However, Eq. (5b) indicates that the coupling
X is marginally relevant, and grows under rescaling.
The fixed point determining the strong-coupling
behavior is not accessible by perturbation theory.
Also, since X is only marginally relevant, direct nu-
merical simulations' ' may be hampered by a large
crossover regime, before the true asymptotic scaling is
observed. Here the mapping to the directed-polymer
problem [Eq. (2)] becomes helpful. At zero tempera-
ture, the directed-polymer problem maps directly to

~, and the strong-coupling behavior can thus be
probed. In fact, searching for the optimal polymer
configuration at zero temperature is computationally
much faster than summing over all configurations at
finite temperature. Preliminary numerical studies of
the polymer problem in d =2 indicate a nontrivial
behavior with 1/z =0.62+0.04 and x/z =0.33 +0.03.
Although the results are not quite conclusive, it ap-
pears as though z ——,

' and X ——,
'

may be regained, in

(&(k, t)&(k', t')) =2DS"(k+k )a(t —t )

The first terms in the perturbation expansions for the
full propagator and for (h (k, t)h ( —kt), ) diverge for
d & 2. The perturbation series is then reorganized
into a renormalization-group calculation by only in-

tegrating out the modes with e 'A ( ~k~ ( A. The
parameters are then rescaled as k' = e'k, t' = e "t, and
the remaining modes as h'(k', t') =e t +""h(kt),.
The rescaled modes then obey Eq. (1) with renormal-
ized coefficients that to the lowest order are

d v/dl = [z —2 + Ed X'(2 —d )/4d ]v,

dD/dl = [z —d —2x+ Kd) 2/4]D,

dx/dl = [x+z —2]x,

with Kd ——Sd/(2m) and h. = A'D/v . (T. he diagrams
contributing to dA/dl cancel at this order. ) The ex-
ponents z and x are adjusted so that d v/dl = dD/dl = 0.
The last equation then indicates that the effective cou-
pling constant A. evolves under rescaling as

2 —d — (2d —3) —
3X+ Kd

4d
(5b)

That this result is identical to the one for Burgers's
equation'6 is, of course, no surprise. The exponents x
and z (evaluated at a fixed point) completely describe
the scaling of the interface. For example, the asymp-
totic behavior of interface width in a strip geometry is
w(L, t) =L"wo(t/L'). The exponent x is related to
the conventional hydrodynamic exponent q

[(v(k, cu)v( —k, —cu)) =k~ 2g (cu/k') ]

through

(6)x = ( 2 —d )/2 + ( 2 —
71

—z )/2.

In the absence of nonlinearities the "ideal" exponent
is x = (2 —d)/2, which is the same as in roughening
models (z =2 in this case). '4 In general, however, x
is different from the roughening exponent. For a clus-
ter growing in a spherical geometry with a radius
R —t, the interface width grows as w (R, t )—R"wo(t/R') —t~ '. lf for 1V particles R —W", then
w —lY', and v'= xv/z is the exponent originally pos-
tulated by Plischke and Racz for the width of the ac-
tive zone.

The expected scaling behavior is now explored in
various numbers of dimensions.

891

ddq
h(k t) =Go(k t)h(k, 0)+) dr G~(k, t —r) &(k 7) ——

J q ~ (k —q)h(q ~)h(k q ~)
0

'
2 (2 )d

The integral equation is then solved perturbatively in

the vertex —(X/2)q (k —q), using the free propaga- (a) d=/. —The expansion results z =,'
tor Go(k, t) =exp( —vk t)8(t), and are actually exact. This is a conseq
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which case these exponents will be superuniversal (in-
dependent of dimension). More numerical and exper-
imental studies of this problem are certainly welcome.

(c) d ~ 3.—For dimensionalities larger than 2 the
coupling A. is irrelevant, and an asymptotically ideal
smooth surface is expected with z=2. 1n principle,
Eq. (5b) allows for the possibility of a phase transition
to different scaling for strong enough couplings. This
is probably not relevant to the growth problem, and
will be discussed more extensively in connection with
the directed polymer.

In conclusion, we have described how a gro~ing in-
terface can be studied by dynamic renormalization
techniques. 8 This allows a classification of growth
processes by their universality. The simplest possible
interface model allowing for both surface tension and
lateral growth is proposed in Eq. (1) The results ob-
tained from this model are in excellent agreement with
numerical simulations of the Eden model" and other
growth processes. 'o In fact, Eq. (1) embodies three
different universality classes. With ) = v =0, it corre-
sponds to the random deposition model'9 with a dif-
fusive interface (h —t'l') With .X=0, it corresponds
to an ideal interface'3 with X= (2 —d)/2 and z = 2.
For A. a0 we obtained a new universality class with

and z = —,
'

(possibly independent of d). These
results provide a framework for experimental meas-
urements of X and z in growth processes. The theoret-
ical task is to generalize the results to more compli-
cated growth mechanisms, with nonlocal interactions 0

or with a diffusive field, which may be more relevant
to solidification fronts, 2 and thus to obtain a more
complete picture of possible universality classes of
growing interfaces.
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